Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $sin 2 \beta $ is the geometric mean between $sin \alpha $ and $cos \alpha ,$ then $cos 4 \beta $ is equal to

NTA AbhyasNTA Abhyas 2022

Solution:

$sin^{2} 2 \beta =sin ⁡ \alpha cos ⁡ \alpha $
$cos 4 \beta =1-2sin^{2} ⁡ 2 \beta $
$=sin^{2} \alpha +cos^{2} ⁡ \alpha -2sin ⁡ \alpha cos ⁡ \alpha $
$=\left(sin \alpha - cos ⁡ \alpha \right)^{2}$
$=\left(\sqrt{2} \left(sin \alpha \cdot \frac{1}{\sqrt{2}} - cos \alpha \frac{1}{\sqrt{2}}\right)\right)^{2}$
$=2\left(sin \alpha cos ⁡ \frac{\pi }{4} - cos ⁡ \alpha sin ⁡ \frac{\pi }{4}\right)^{2}$
$=2\left(sin \left(\alpha - \frac{\pi }{4}\right)\right)^{2}=2\left(sin\right)^{2} ⁡ \left(\frac{\pi }{4} - \alpha \right)$