Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\begin{bmatrix}\sin ^{2} \alpha \cos ^{2} \alpha \\ \cos ^{2} \alpha \sin ^{2} \alpha\end{bmatrix}=0, \alpha \in(0, \pi)$, then the values of $\alpha$ are

KEAMKEAM 2012Determinants

Solution:

Given, $\begin{bmatrix}\sin ^{2} \alpha & \cos ^{2} \alpha \\ \cos ^{2} \alpha & \sin ^{2} \alpha\end{bmatrix}=0$
$\Rightarrow \sin ^{4} \alpha-\cos ^{4} \alpha=0$
$\Rightarrow \left(\sin ^{2} \alpha-\cos ^{2} \alpha\right)\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=0$
$\Rightarrow -\cos 2 \alpha(1)=0$
$\Rightarrow \cos 2 \alpha=0$
$\Rightarrow 2 \alpha=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$
$\Rightarrow \alpha=\frac{\pi}{4}$ and $\frac{3 \pi}{4}$