Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sin ^{-1} \frac{5}{x}+\sin ^{-1} \frac{12}{x}=\frac{\pi}{2}$, then find value of $x$.

Inverse Trigonometric Functions

Solution:

$\cos ^{-1} \frac{\sqrt{x^{2}-25}}{x}+\sin ^{-1} \frac{12}{x}=\frac{\pi}{2}$
$\sqrt{x^{2}-25}=12$
$x^{2}=169$
$x=13$