Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \sec \left( \frac{x+y}{x-y} \right)=a, $ then $ \frac{dy}{dx} $ is equal to:

KEAMKEAM 2001

Solution:

$ sec\left( \frac{x+y}{x-y} \right)=a $ $ \Rightarrow $ $ \left( \frac{x+y}{x-y} \right)={{\sec }^{-1}}(a) $ On differentiating with respect to $ x $ $ \Rightarrow $ $ \frac{(x-y)\left( 1+\frac{dy}{dx} \right)-(x+y)\left( 1-\frac{dy}{dx} \right)}{{{(x-y)}^{2}}}=0 $ $ \Rightarrow $ $ x+x\frac{dy}{dx}-y-y\frac{dy}{dx}-x+x\frac{dy}{dx}-y $ $ +y\frac{dy}{dx}=0 $ $ \Rightarrow $ $ 2x\frac{dy}{dx}=2y $ $ \Rightarrow $ $ \frac{dy}{dx}=\frac{y}{x} $