Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sec \, \alpha$ and $cosec \, \alpha$ are the roots of the equation $x^2 - px + q = 0, $ then

Trigonometric Functions

Solution:

$\sec\alpha + cosec \alpha =- \left(-p\right) = p$
$ \text{Also} \, \sec\alpha \, cosec \alpha = q$
$ \Rightarrow \sin\alpha \cos\alpha = \frac{1}{q} $
From (1) and (2)
$\sin\alpha + \cos\alpha = p \sin\alpha \cos\alpha = \frac{p}{q}$
squaring, we get
$ 1 + 2 \sin\alpha \cos\alpha = \frac{p^{2}}{q^{2}} \Rightarrow 1 + \frac{2}{q} =\frac{p^{2}}{q^{2}} $
$\Rightarrow p^{2} = q\left(q+2\right) $