Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $S ^{*}(p, q, r)$ is the dual of the compound statement $S ( p , q , r )$ and $S (p, q, r)=\sim p \wedge[\sim(q \vee r)]$ then $S ^{*}(\sim p, \sim q, \sim r)$ is equivalent to -

Mathematical Reasoning

Solution:

$S ^{*}(p, q, r)=\sim p \vee[\sim(q \wedge r)]$
$S ^{*}(\sim p, \sim q, \sim r)=\sim(\sim p) \vee[\sim(\sim q \wedge \sim r)]$
$=p \vee[q \vee r]$
$\sim S (p, q, r)=\sim[\sim p \wedge[\sim(q \vee r)]]$
$=\sim(\sim p) \vee \sim[\sim(q \vee r)]=p \vee(q \vee r)$
$= S ^{*}(\sim p, \sim q, \sim r)$