Q.
If $S _{ n }=\displaystyle\sum_{ r =1}^{ n } r$ ! then for $n >6 \quad\left(\right.$ given $\left.\displaystyle\sum_{ r =1}^6 r !=873\right)$
Column I
Column II
A
$\sin ^{-1}\left(\sin \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$
P
$5-2 \pi$
B
$\cos ^{-1}\left(\cos \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$
Q
$2 \pi-5$
C
$\tan ^{-1}\left(\tan \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$
R
$6-2 \pi$
D
$\cot ^{-1}\left(\cot \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$
S
$5-\pi$
T
$\pi-4$
(where [ ] denotes greatest integer function)
Column I | Column II | ||
---|---|---|---|
A | $\sin ^{-1}\left(\sin \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$ | P | $5-2 \pi$ |
B | $\cos ^{-1}\left(\cos \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$ | Q | $2 \pi-5$ |
C | $\tan ^{-1}\left(\tan \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$ | R | $6-2 \pi$ |
D | $\cot ^{-1}\left(\cot \left( S _{ n }-7\left[\frac{ S _{ n }}{7}\right]\right)\right)$ | S | $5-\pi$ |
T | $\pi-4$ |
Inverse Trigonometric Functions
Solution: