Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Sn= displaystyle ∑24n (-1) (k(k+1)/2) k2. Then, Sn can take value (s)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $S_n= \displaystyle \sum_2^{4n} (-1) ^\frac{k(k+1)}{2}\, k^2.$ Then, $S_n$ can take value $(s)$
JEE Advanced
JEE Advanced 2013
Sequences and Series
A
1056
35%
B
1088
24%
C
1120
23%
D
1332
17%
Solution:
Now,
$S_{n} =\displaystyle\sum_{k=1}^{4 n}(-1)^{\frac{k(k+1)}{2}} \cdot k^{2} $
$=-(1)^{2}-2^{2}+3^{2}+4^{2}-5^{2}-6^{2}+7^{2}+8^{2}+\ldots$
$=\left(3^{2}-1^{2}\right)+\left(4^{2}-2^{2}\right)+\left(7^{2}-5^{2}\right)+\left(8^{2}-6^{2}\right)+\ldots$
$=\underbrace{2\{(4+6+12+\ldots)}_{n \text { terms }}+\underbrace{(6+14+22+\ldots)\}}_{n \text { terms }} $
$=2\left[\frac{n}{2}\{2 \times 4+(n-1) 8\}+\frac{n}{2}\{2 \times 6+(n-1) 8\}\right]$
$=2[n(4+4 n-4)+n(6+4 n-4)] $
$=2\left[4 n^{2}+4 n^{2}+2 n\right]=4 n(4 n+1)$
Here, $1056 =32 \times 33,1088=32 \times 34,$
$1120 =32 \times 35,1332=36 \times 37$
$1056$ and $1332$ are possible answers.