Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $S _{ n }$ denote the sum of $n$ terms of the series $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots \ldots \ldots \ldots$
and $\sigma_{n-1}$ that to $(n-1)$ terms of the series $\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5}+\frac{1}{3 \cdot 4 \cdot 5 \cdot 6}+\ldots \ldots \ldots \ldots . . .$.
Find $\left|S_n\left(18 \sigma_{n-1}-1\right)\right|$.

Sequences and Series

Solution:

$ S_n=1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots \ldots \ldots$ upto $n$ terms
$=\displaystyle\sum_{n=1}^n n ( n +1)=\displaystyle\sum_{ n =1}^{ n } n ^2+\displaystyle\sum_{ n =1}^{ n } n =\frac{ n ( n +1)(2 n +1)}{6}+\frac{ n ( n +1)}{2} $
$S _{ n }=\frac{ n ( n +1)( n +2)}{3}$
Also, $\sigma_{n-1}=\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5}+\frac{1}{3 \cdot 4 \cdot 5 \cdot 6}+\ldots \ldots . .$. upto $(n-1)$ terms
$=\displaystyle\sum_{n=1}^{n-1} \frac{1}{n(n+1)(n+2)(n+3)}=\frac{1}{3} \displaystyle\sum_{n=1}^{n-1} \frac{(n+3)-n}{n(n+1)(n+2)(n+3)}$
$\sigma_{ n -1}=\frac{1}{3} \sum_{ n =1}^{ n -1}\left(\frac{1}{ n ( n +1)( n +2)}-\frac{1}{( n +1)( n +2)( n +3)}\right)$
$\Rightarrow \sigma_{ n -1}=\frac{1}{18}-\frac{1}{3 n ( n +1)( n +2)}$
$\Rightarrow \sigma_{ n -1}=\frac{1}{18}-\frac{1}{9 S _{ n }} \text { [using(1)] }$
$\Rightarrow \sigma_{ n -1}=\frac{ S _{ n }-2}{18 S _{ n }} $
$\Rightarrow 18 S _{ n } \sigma_{ n -1}- S _{ n }+2=0$
Hence, $\left|S_n\left(18 \sigma_{n-1}-1\right)\right|=|-2|=2$
For objective: Put $n=2$