Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Re((z-1/2z+i)) = 1, where z = x + iy, then the point (x, y) lies on a :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $Re\left(\frac{z-1}{2z+i}\right) = 1$, where $z = x + iy$, then the point $\left(x, y\right)$ lies on a :
JEE Main
JEE Main 2020
Complex Numbers and Quadratic Equations
A
circle whosecentre is at $\left(-\frac{1}{2}, -\frac{3}{2}\right).$
B
straight line whose slope is $\frac{3}{2}.$
C
circle whose diameter is $ \frac{\sqrt{5}}{2}.$
D
straight line whose slope is $- \frac{2}{3}.$
Solution:
$Re\left(\frac{z-1}{2z+i}\right) = 1$
Put $z = x + iy$
Put $z = x + iy$
$Re\left(\frac{\left(x+iy\right)-1}{2\left(x+iy\right)+i}\right) = 1$
$Re\left(\frac{\left(x-1\right)+iy}{2x+i\left(2y+1\right)}\left(\frac{2x-i\left(2y+1\right)}{2x-i\left(2y+1\right)}\right)\right) = 1$
$\Rightarrow 2x^{2} + 2y^{2} + 2x + 3y + 1 = 0$
$x^{2} + y^{2} + x + \frac{3}{2}y+\frac{1}{2} = 0$
$\Rightarrow $ locus is a circle whose
Centre is $\left(-\frac{1}{2}, -\frac{3}{4}\right)$ and radius $\frac{\sqrt{5}}{4}$
$\Rightarrow $ diameter $= \frac{\sqrt{5}}{2}$
$Re\left(\frac{\left(x+iy\right)-1}{2\left(x+iy\right)+i}\right) = 1$
$Re\left(\frac{\left(x-1\right)+iy}{2x+i\left(2y+1\right)}\left(\frac{2x-i\left(2y+1\right)}{2x-i\left(2y+1\right)}\right)\right) = 1$
$\Rightarrow 2x^{2} + 2y^{2} + 2x + 3y + 1 = 0$
$x^{2} + y^{2} + x + \frac{3}{2}y+\frac{1}{2} = 0$
$\Rightarrow $ locus is a circle whose
Centre is $\left(-\frac{1}{2}, -\frac{3}{4}\right)$ and radius $\frac{\sqrt{5}}{4}$
$\Rightarrow $ diameter $= \frac{\sqrt{5}}{2}$