Terminal velocity is given by,
$v_{T}=\frac{2}{9}. \frac{r^{2}\left(\rho-\sigma\right)\,g}{\eta}$
That means,
$v_{T} \,\infty\, r^{2}$
Surface area of a drop, A $=4\pi r^{2}$
So, $v_{T} \,\infty\, A$
Given, $\frac{v_{T_1}}{v_{T_2}}=\frac{3}{4}$
So, $\frac{v_{T_1}}{v_{T_2}}=\frac{A_{1}}{A_{2}}=\frac{3}{4}$