Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If radius of the $^{27}_{13} Al$ nucleus is estimated to be $3.6$ fermi, then the radius of $^{125}_{52} Te$ nucleus be nearly:

AIEEEAIEEE 2005Nuclei

Solution:

$R=R_{0}\left(A\right)^{1/3}$
$\frac{R_{Al}}{R_{Te}}=\frac{R_{0}\left(Al\right)^{1/3}}{R_{0}\left(A_{Te}\right)^{1/3}}$
$\frac{R_{Al}}{R_{Te}}=\frac{\left(A_{Al}\right)^{1/3}}{\left(A_{Te}\right)^{1/3}}$
$=\frac{\left(27\right)^{1/3}}{\left(125\right)^{1/3}}=\frac{3}{5}$
$\therefore R_{Te}=\frac{5}{3}\times3.6$
$R_{Te}=6$ fermi