Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $R$ is the relation 'less than' from, $A = \{1, 2, 3,4, 5\}$ to $B = \{1, 4, 5\}$, then the set of ordered pairs corresponding to $R$ is

Relations and Functions

Solution:

It is given that $\left(x, y\right) \in R \Leftrightarrow x < y$, where $x \in A$ and $y \in B$.
For the elements of the given sets $A$ and $B$, we find that
$1 < 4$, $1 < 5$, $2 < 4$, $2 < 5$, $3 < 4$, $3 < 5$ and $4 < 5$
$\therefore \left(1,4\right) \in R, \left(1,5\right) \in R, \left(2,4\right) \in R, \left(2,5\right) \in R, \left(3,4\right)\in R, \left(3,5\right) \in R$ and $\left(4, 5\right) \in R$.
Thus, $R = \left\{\left(1,4\right), \left(1,5\right), \left(2,4\right), \left(2,5\right), \left(3,4\right) \left(3,5\right), \left(4,5\right)\right\}$.