Thank you for reporting, we will resolve it shortly
Q.
If $R_1$ and $R_2$ be symmetric relations in a set $A$, then
$R_1 \cup R_2$ is
Relations and Functions - Part 2
Solution:
As $R_1$ and $R_2$ are relations in $A$
$\therefore R_{1 } \subseteq A \times A$ and $R_{2} \subseteq A \times A $
$\therefore R_{1} \cup R_{2} \subseteq A \times A, so R_{1} \cup R_{2} $ is a relation in $A$.
Let $(a, b) \in R_1 \cup R_2$
$\Rightarrow (a, b) \in R_1 $ or $(a, b) \in R_2$
$\Rightarrow (b, a) \in R_1$, or $(b, a) \in R_2$
$(\because R_1, R_2 $ are symmetric)
$\Rightarrow (b, a) \in R_1 \cup R_2$
Thus $(a, b) \in R_1 \cup R_2$
$\Rightarrow (b, a) \in R_1 \cup R_2$
$\Rightarrow R_1 \cup R_2$ is symmetric