Heat given to the gas at room temperature and at constant temperature.
Q = $ n C_p \triangle \, T $
$\therefore 1163.4 = 1 \times \frac{ 7}{2} R \times \triangle T $
$ $ $ ( \because C_p = \frac{ 7}{2}$ R for diatomic gas)
or $ \triangle T = \frac{ 2 \times 1163.4 }{ 7 \times 8.31 } $
$ $ $ ( \because R = 8.31 \, J \, mol^{-1} \, K^{ - 1} )$
or $ \triangle T = 40 K $