Thank you for reporting, we will resolve it shortly
Q.
If pressure and temperature of an ideal gas are doubled and volume is halved, the number of molecules of gas
NTA AbhyasNTA Abhyas 2020
Solution:
Applying ideal gas equation, we have
$pV=nRT$
Where, $p=$ pressure of the gas
$V=$ volume of the gas
$n=$ number of moles
$R=$ gas constant
$T=$ temperature of the gas
$\therefore \, \, n_{1}=\frac{p_{1} V_{1}}{R T_{1}}$
and $n_{2}=\frac{p_{2} V_{2}}{R T_{2}}$
$\Rightarrow \, \, \, \frac{n_{2}}{n_{1}}=\frac{p_{2} V_{2}}{p_{1} V_{1}}\times \frac{T_{1}}{T_{2}}=\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{V_{2}}{V_{1}}\right)\left(\frac{T_{1}}{T_{2}}\right)$
$\frac{n_{2}}{n_{1}}=\left(2\right)\left(\frac{1}{2}\right)\left(2\right)$
$n_{2}=2n_{1}$