Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $p , q , r$ are prime numbers and $\alpha, \beta, \gamma$ are positive integers such that L.C.M. of $\alpha, \beta, \gamma$ is $p ^3 q ^2 r$ and greatest common divisor of $\alpha, \beta, \gamma$ is pqr then the number of possible triplets $(\alpha, \beta, \gamma)$ will be

Permutations and Combinations

Solution:

$\Theta $ LCM of $\alpha, \beta, \gamma=p^3 q^2 r \&$ HCF $=$ pqr
$\therefore \alpha =p^{m_1} q^{n_1} r $
$ \beta=p^{m_2} q^{n_2} r $
$\gamma =p^{m_3} q^{n_3} r$
minimum of $\left( m _1, m _2, m _3\right)=1$ & maximum of $\left( m _1, m _2, m _3\right)=3$
$\therefore$ Number of possibilities for $m _1, m _2, m _3=12$
and minimum of $\left( n _1, n _2, n _3\right)=1$ and maximum $\left( n _2, n _2, n _3\right)=2$
$\therefore$ Number of possibilities $=6$
$\therefore$ Total number of ordered triplets $=12 \times 6=72 $