Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. if P =$\begin{bmatrix}i&0&-i\\ 0&-i&i\\ -i&i&0\end{bmatrix}$ and $Q=\begin{bmatrix}-i&i\\ 0&0\\ i&-i\end{bmatrix}$ then $PQ$ is equal to

Matrices

Solution:

Since, $P = \begin{bmatrix}i&1&-i\\ 0&-i&i\\ -i&i&0\end{bmatrix} and Q = \begin{bmatrix}-i&i\\ 0&0\\ i&-i\end{bmatrix}$

$\therefore PQ= \begin{bmatrix}i&0&-i\\ 0&-i&i\\ -i&i&0\end{bmatrix}\begin{bmatrix}-i&i\\ 0&0\\ i&-i\end{bmatrix}$

$= \begin{bmatrix}-i^{2}-i^{2}&i^{2}+i^{2}\\ i^{2}&-i^{2}\\ i^{2}&-i^{2}\end{bmatrix}\begin{bmatrix}1+1&-1-1\\ -1&1\\ -1&1\end{bmatrix}=\begin{bmatrix}2&-2\\ -1&1\\ -1&1\end{bmatrix}$