Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $P= \begin{bmatrix}\cos (\pi / 6) & \sin (\pi / 6) \\ -\sin (\pi / 6) & \cos (\pi / 6)\end{bmatrix}, A = \begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}$ and $Q =PAP \phi$ then $P \phi Q ^{2007} P$ is equal to

Matrices

Solution:

Note that $P'= P ^{-1}$ Now, $Q = PAP'= PAP ^{-1}$
$\Rightarrow Q^{2007}=P A^{2007} P^{-1}$
$\therefore P' Q ^{2007} P = P ^{-1}\left( PA ^{2007} P ^{-1}\right) P = A ^{2007}=( I + B )^{2007}$
where $B = \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}$.
As $B ^{2}=0$, we get $B ^{ r }=0 \forall r \geq 2$.
Thus, by binomial theorem,
$A ^{2007}= I +2007 B = \begin{bmatrix}1 & 2007 \\ 0 & 1\end{bmatrix}$