Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p= cos 55o,q= cos 65o and r= cos 175o, then the value of (1/p)+(1/q)+(r/pq) is:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ p=\cos {{55}^{o}},q=\cos {{65}^{o}} $ and $ r=\cos {{175}^{o}}, $ then the value of $ \frac{1}{p}+\frac{1}{q}+\frac{r}{pq} $ is:
Bihar CECE
Bihar CECE 2006
A
0
B
$ -1 $
C
1
D
none of these
Solution:
Given that
$p=\cos 55^{\circ}, q=\cos 65^{\circ}$ and $r=\cos 175^{\circ}$
Then, $ \frac{1}{p}+\frac{1}{q}+\frac{r}{p q}=\frac{p+q+r}{p q}$
$=\frac{\cos 55^{\circ}+\cos 65^{\circ}+\cos 175^{\circ}}{\cos 55^{\circ} \cos 65^{\circ}}$
$=\frac{\cos 55^{\circ}+2 \cos \left(\frac{175^{\circ}+65^{\circ}}{2}\right) \cos \left(\frac{175^{\circ}-65^{\circ}}{2}\right)}{\cos 55^{\circ} \cos 65^{\circ}}$
$=\frac{\cos 55^{\circ}+2 \cos 120^{\circ} \cos 55^{\circ}}{\cos 55^{\circ} \cos 65^{\circ}}$
$=\frac{\cos 55^{\circ}\left(1+2 \cos 120^{\circ}\right)}{\cos 55^{\circ} \cos 65^{\circ}}$
$=\frac{\left(1-2 \times \frac{1}{2}\right)}{\cos 65^{\circ}} \,\,\left(\because \cos 120^{\circ}=-\frac{1}{2}\right)$
$=\frac{0}{\cos 65^{\circ}}=0$