Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If P(at2, 2at) be one end of a focal chord of the parabola y2 = 4ax, then the length of the chord is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $P(at^2, 2at)$ be one end of a focal chord of the parabola $y^2 = 4ax$, then the length of the chord is
WBJEE
WBJEE 2008
A
$a\left(t -\frac{1}{t}\right)^{2}$
B
$a\left(t -\frac{1}{t}\right)$
C
$a\left(t +\frac{1}{t}\right)$
D
$a\left(t +\frac{1}{t}\right)^{2}$
Solution:
If $P ( at^2, 2at)$ be one end of a focal chord of the parabola $y^2 = 4ax$, then another end of chord will be $Q \left(\frac{a}{t^{2}}, \frac{-2a}{t}\right)$.
$\therefore $ Length of focal chord $= PQ$
$=\sqrt{\left(\frac{a}{t^{2}} -at^{2}\right)^{2} + \left(-\frac{2a}{t} -2at\right)^{2}} $
$ = a\sqrt{\left(\frac{1}{t}-t\right)^{2}\left(\frac{1}{t}+t\right)^{2} +4\left(\frac{1}{t} +t\right)^{2}}$
$ = a\left(\frac{1}{t}+t\right)\sqrt{\left(\frac{1}{t} -t\right)^{2}+4} $
$= a\left(\frac{1}{t} +t\right)^{2}$