Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $p$ and $q$ are non-zero real numbers and $\alpha^{3}+\beta^{3}=-p, \alpha\beta =q, $ then a quadratic equation whose roots are $\frac{\alpha^{2}}{\beta}, \frac{\beta^{2}}{\alpha} is:$

JEE MainJEE Main 2013Complex Numbers and Quadratic Equations

Solution:

Given $\alpha^{3}+\beta^{3} =-p \, and \, \alpha\beta =q$
Let $\frac{\alpha^{2}}{\beta} \, and \, \frac{\beta^{2}}{\alpha} $ be the root of required quadratic equation.
So, $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha\beta}=\frac{-p}{q}$
and $\frac{\alpha^{2}}{\beta}\times\frac{\beta^{2}}{\alpha}=\alpha\beta=q$
Hence, required quadratic equation is
$x^{2}-\left(\frac{-p}{q}\right) x+q=0$
$\Rightarrow x^{2}+\frac{p}{q} x+q=0 \, \Rightarrow qx^{2}+px+q^{2}=0$