Thank you for reporting, we will resolve it shortly
Q.
If $P(a \cos \theta, b \sin \theta)$ is a point on an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then ' $\theta$ ' is
Conic Sections
Solution:
$P(a \cos \theta, b \sin \theta)$, then $\theta$ is angle of a corresponding pont on auxilliary circle $x^{2}+y^{2}=a^{2}$ i.e., $(a \cos \theta, a$ $\sin \theta)$