Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $P\left(A\right)=0.4$, $P\left(B\right)=0.8$ and $P\left(B |A\right)=0.6$, then $P\left(A \cup B\right)$ is equal to

Probability - Part 2

Solution:

$P\left(A\right)=0.4$,
$P\left(B\right)=0.8$,
$P\left(B| A\right)=0.6$
$P\left(A\cap B\right)=P\left(B| A\right)P\left(A\right)=0.6\times0.4=0.24$
$\therefore P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right)$
$=0.4+0.8-0.24$
$=0.96$