Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If one root of the equation x2+px+12=0 is 4 when equation x2+px+q=0 have equal roots, then the value of q is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If one root of the equation $ {{x}^{2}}+px+12=0 $ is 4 when equation $ {{x}^{2}}+px+q=0 $ have equal roots, then the value of $ q $ is
Rajasthan PET
Rajasthan PET 2005
A
$ \frac{4}{49} $
B
$ \frac{49}{4} $
C
$ 4 $
D
$ \frac{1}{4} $
Solution:
Given, 4 is a root of the equation
$ {{x}^{2}}+px+12=0 $
$ \therefore $ $ 16+4p+12=0 $
$ \Rightarrow $ $ 4p=-28 $
$ \Rightarrow $ $ p=-7 $
And equation $ {{x}^{2}}+px+q=0 $
have equal roots, let roots are
$ \alpha ,\alpha $ .
$ \therefore $ $ \alpha +\alpha =-\frac{p}{1}=-p $
$ \Rightarrow $ $ 2\alpha =-p $
$ \Rightarrow $ $ \alpha =-\frac{p}{2}=\frac{7}{2} $
$ [\because p=-7] $ and $ \alpha .\alpha =q $
$ \Rightarrow $ $ {{\left( \frac{7}{2} \right)}^{2}}=q $
$ \Rightarrow $ $ q=\frac{49}{4} $