Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If one root of the equation $x^{2} + p x + q = 0$ is the square of the other, then

NTA AbhyasNTA Abhyas 2022

Solution:

$x^{2}+px+q=0\,$
Let, $\alpha , \alpha ^{2}$ are the roots of the given equation.
$\Rightarrow \alpha +\alpha ^{2}=-p$
and $\alpha \cdot \alpha ^{2} = q$
$\Rightarrow \alpha ^{3} = q$
$\because \alpha + \alpha ^{2} = - p$
$\Rightarrow\left(\alpha+\alpha^{2}\right)^{3}=-p^{3}$
$\Rightarrow \alpha^{6}+\alpha^{3}+3 \alpha \cdot \alpha^{2}\left(\alpha+\alpha^{2}\right)=-p^{3}$
$\Rightarrow q^{2}+q+3 \alpha^{3}\left(\alpha+\alpha^{2}\right)=-p^{3}$
$\Rightarrow q^{2}+q+3 q(-p)=-p^{3}$
$\Rightarrow p^{3}+q^{2}+q-3 p q=0\,$
$\Rightarrow p^{3}+q^{2}+q(1-3 p)=0\,$