Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ω ≠ 1 is the complex cube root of unity and matrix H =[ω&0 0&ω], then H70 is equal to -
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\omega \ne 1$ is the complex cube root of unity and matrix $ H =\begin{bmatrix}\omega&0\\ 0&\omega\end{bmatrix}$, then $H^{70}$ is equal to -
AIEEE
AIEEE 2011
Matrices
A
0
19%
B
-H
14%
C
$H^2$
25%
D
H
42%
Solution:
$H^{2} = \begin{bmatrix}\omega&0\\ 0&\omega\end{bmatrix}\begin{bmatrix}\omega &0\\ 0&\omega \end{bmatrix} = \begin{bmatrix}\omega^{2} &0\\ 0&\omega^{2} \end{bmatrix}$
If $H^{k} = \begin{bmatrix}\omega^{k} &0\\ 0&\omega^{k} \end{bmatrix}$, then $H^{k+1} = \begin{bmatrix}\omega^{k+1} &0\\ 0&\omega^{k+1} \end{bmatrix}$
So by mathematical induction,
$ H^{70} = \begin{bmatrix}\omega ^{70} &0\\ 0&\omega ^{70} \end{bmatrix} = \begin{bmatrix}\omega &0\\ 0&\omega \end{bmatrix} = H$