Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\omega(\neq 1)$ is a complex cube root of unity and $\left(1+\omega^4\right)^n=\left(1+\omega^8\right)^n$, then the least positive integral value of $n$ is

Complex Numbers and Quadratic Equations

Solution:

As $ \omega^4=\omega, \omega^8=\omega^2$, we get
$(1+\omega)^n=\left(1+\omega^2\right)^n $
$\Rightarrow \left(-\omega^2\right)^n=(-\omega)^n$
$\Rightarrow \omega^n=1 $
$\therefore n=3$