Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\omega$ is a complex cube root of unity, then $\left(1-\omega+\omega^{2}\right)^{6}+\left(1-\omega^{2}+\omega\right)^{6}=$

TS EAMCET 2020

Solution:

We have, $\left(1-\omega+\omega^{2}\right)^{6}+\left(1-\omega^{2}+\omega\right)^{6}$
$=(-\omega-\omega)^{6}+\left(-\omega^{2}-\omega^{2}\right)^{6} $
$\left[\because 1+\omega+\omega^{2}=0\right]$
$=(-2 \omega)^{6}+\left(-2 \omega^{2}\right)^{6}$
$=64 \omega^{6}+64 \omega^{12}$
$=64\left(\omega^{3}\right)^{2}+64\left(\omega^{3}\right)^{4}$
$=64(1)^{2}+64(1)^{4}$
$=64+64=128$