Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $N =\operatorname{antilog}_7\left(\log _3\left(\operatorname{antilog}_{\sqrt{3}}\left(\log _3 81\right)\right)\right)$, then $\log _3 N$ lies between two successive integers $a$ and $b$. Find $(a+b)$.

Continuity and Differentiability

Solution:

$ N =\operatorname{antilog}_7\left(\log _3\left(\operatorname{antilog}_{\sqrt{3}}\left(\log _3 81\right)\right)\right)=\operatorname{antilog}_7\left(\log _3(\sqrt{3})^4\right) $
$=\operatorname{antilog}_7\left(\log _3 9\right)=\operatorname{antilog}_7(2)=7^2=49 $
$ N =49 \Rightarrow 3<\log _3 43<4 \Rightarrow a + b =7$