Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $n$ is any integer, then the general solution of the equation $\cos x-\sin x=\frac{1}{\sqrt{2}}$ is

Trigonometric Functions

Solution:

Given equation is $\cos x-\sin x=\frac{1}{\sqrt{2}}$
Dividing equation by $\sqrt{2}$,
$\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x=\frac{1}{2} $
$\Rightarrow \cos \left(\frac{\pi}{4}+x\right)=\cos \frac{\pi}{3}$
$\Rightarrow \quad \frac{\pi}{4}+x=2 n \pi \pm \frac{\pi}{3} ;$
$ x=2 n \pi+\frac{\pi}{3}-\frac{\pi}{4}=2 n \pi+\frac{\pi}{12}$
or $\quad x=2 n \pi-\frac{\pi}{3}-\frac{\pi}{4}=2 n \pi-\frac{7 \pi}{12}$.