Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $n$ is a positive integer, then the middle term in the expansion of $(1+x)^{2 n}$ is

Binomial Theorem

Solution:

As $2 n$ is even, the middle term of the expansion $(1+x)^{2 n}$ is $\left(\frac{2 n}{2}+1\right)^{t h}$, i.e., $(n+1)^{t h}$ term which is given by
$T_{n+1} ={ }^{2 n} C_n(1)^{2 n-n}(x)^n={ }^{2 n} C_n x^n=\frac{(2 n) !}{n ! n !} x^n $
$ =\frac{2 n(2 n-1)(2 n-2) \ldots 4 \cdot 3 \cdot 2 \cdot 1}{n ! n !} x^n$
$=\frac{1 \cdot 2 \cdot 3 \cdot 4 \ldots(2 n-2)(2 n-1)(2 n)}{n ! n !} x^n$
$=\frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)][2 \cdot 4 \cdot 6 \ldots(2 n)]}{n ! n !} x^n$
$=\frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)] 2^n[1 \cdot 2 \cdot 3 \ldots n]}{n ! n !} x^n $
$=\frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)] n !}{n ! n !} 2^n x^n$
$ =\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n !} 2^n x^n$