Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $n$ is a non-negative integer and $A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix} $ , then $A^n = $

COMEDKCOMEDK 2008Matrices

Solution:

$A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix}$
$ A^{2} = \begin{bmatrix}1&0\\ 1&1\end{bmatrix}\begin{bmatrix}1&0\\ 1&1\end{bmatrix} =\begin{bmatrix}1&0\\ 2&1\end{bmatrix} $
Similarly, $A^{3} =\begin{bmatrix}1&0\\ 3&1\end{bmatrix} $
$A^{4} = \begin{bmatrix}1&0\\ 4&1\end{bmatrix}$ and so on
Hence , $A^{n}= \begin{bmatrix}1&0\\ n&1\end{bmatrix} $