Q.
If $m$ and $\sigma^{2}$ are the mean and variance of the random variable $X$, whose distribution is given by
$X=x$
$0$
$1$
$2$
$3$
$P(X=x)$
$\frac{1}{3}$
$\frac{1}{2}$
$0$
$\frac{1}{6}$
Then
$X=x$ | $0$ | $1$ | $2$ | $3$ |
$P(X=x)$ | $\frac{1}{3}$ | $\frac{1}{2}$ | $0$ | $\frac{1}{6}$ |
ManipalManipal 2009
Solution:
Given, distribution is
$X=x$
$0$
$1$
$2$
$3$
$P(X=x)$
$\frac{1}{3}$
$\frac{1}{2}$
$0$
$\frac{1}{6}$
$\therefore $ Mean, $m=\displaystyle\sum_{i=1}^{4} p_{i} x_{i}$
$=0 \times \frac{1}{3}+1 \times \frac{1}{2}+2 \times 0+3 \times \frac{1}{6}$
$=0+\frac{1}{2}+0+\frac{1}{2}=1$
Variance, $\sigma^{2}=\displaystyle\sum_{i=1}^{4} p_{i}\left(x_{i}-m\right)^{2}$
$=\frac{1}{3}(0-1)^{2}+\frac{1}{2}(1-1)^{2}+0(2-1)^{2}+\frac{1}{6}(3-1)^{2}$
$=\frac{1}{3}+0+0+\frac{2}{3}=1$
$\therefore m=\sigma^{2}=1$
$X=x$ | $0$ | $1$ | $2$ | $3$ |
$P(X=x)$ | $\frac{1}{3}$ | $\frac{1}{2}$ | $0$ | $\frac{1}{6}$ |