Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\log x: \log y: \log z=(y-z):(z-x):(x-y)$, then

Continuity and Differentiability

Solution:

$\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}=k$
$\therefore \log x=k(y-z): \log y=k(z-x): \log z=k(x-y) $
$\therefore \log x+\log y+\log z=0$
$\Rightarrow x y z=1 $
$\text { and } x \log x+y \log y+z \log z=0$
$\Rightarrow x^x y^y z^z=1$