Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log 3 2=x, then the value of ( log 10 72/ log 10 24) is:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\log _3 2=x$, then the value of $\frac{\log _{10} 72}{\log _{10} 24}$ is:
Logarithms
A
$\frac{1+x}{1-x}$
B
$\frac{2+3 x}{1+3 x}$
C
$\frac{2-3 x}{2+3 x}$
D
$\frac{3 x+1}{3 x+2}$
Solution:
Given, $\log _3 2=x$
$\frac{\log _{10} 72}{\log _{10} 24}=\log _{24} 72=\log _{24}(24 \times 3)$
$=\log _{24} 24+\log _{24} 3=1+\frac{\log 3}{\log 24} $
$=1+\frac{\log _3 3}{\log _3 24} $
$=1+\frac{1}{\log _3(3 \times 8)} $
$=1+\frac{1}{\log _3 3+\log _3 8} $
$=1+\frac{1}{1+\log _3 2^3} $
$=1+\frac{1}{1+3 \log _3 2} $
$=\frac{1+3 \log _3 2+1}{1+3 \log _3 2}=\frac{2+3 x}{1+3 x} .$