Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\log 2=0.301$, then find the number of digits in $2^{1024}$.

Logarithms

Solution:

Let $x=2^{1024}$
$\Rightarrow \log x=\log 2^{1024} $
$=1024 \log 2=1024(0.301) $
$\Rightarrow \log x=308.22 $
$\Rightarrow \text { The characteristic is } 308$
$\therefore$ The number of digits in $2^{1024}$ is 309 .