Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\log _{1 / 2}\left(\frac{|z-1|+4}{3|z-1|-2}\right)>1$, then the locus of $z$ is

Complex Numbers and Quadratic Equations

Solution:

$\log _{1 / 2}\left(\frac{|z-1|+4}{3|z-1|-2}\right)>1 $
$0<\frac{|z-1|+4}{3|z-1|-2}<\frac{1}{2} |z-1|=t $
$0<\frac{t+4}{3 t-2}<\frac{1}{2} $
$0<\frac{t+4}{3 t-2}<\frac{1}{2} \Rightarrow t>10$
So true