Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If displaystyle lim x arrow ∞((x2+x+1/x+1)-a x-b)=4, then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\displaystyle\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$, then
IIT JEE
IIT JEE 2012
Limits and Derivatives
A
a = 1, b = 4
0%
B
a = 1, b = - 4
0%
C
a = 2, b = - 3
0%
D
a = 2, b = 3
100%
Solution:
PLAN $\left(\frac{\infty}{\infty}\right)$ form
$\displaystyle\lim _{x \rightarrow \infty} \frac{a_{0} x^{n}+a_{1} x^{n-1}+\ldots +a_{n}}{b_{0} x^{m}+b_{1} x^{m-1}+\ldots +b_{m}}= \begin{cases} 0, & \quad \text{if } n < m\\ \frac{a_0}{b_0} & \quad \text{if } n =m \\ +\infty & \quad \text{if } n > m and a_0 b_0 > 0 \\ - \infty & \quad \text{if } n > m and a_0b_0 <0 \end{cases} $
Description of Situation As to make degree of numerator equal to degree of denominator.
$\displaystyle\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$
$=\Rightarrow \displaystyle\lim _{x \rightarrow \infty} \frac{x^{2}+x+1-a x^{2}-a x-b x-b}{x+1}=4$
$\Rightarrow \displaystyle\lim _{x \rightarrow \infty} \frac{x^{2}(1-a)+x(1-a-b)+(1-b)}{x+1}=4$
Here, we make degree of numerator= degree of denominator
$\therefore 1-a=0 \Rightarrow a=1$
and $\displaystyle\lim _{x \rightarrow \infty} \frac{x(1-a-b)+(1-b)}{x+1}=4$
$\Rightarrow 1-a-b=4$
$\Rightarrow b=-4[\because(1-a)=0] .$