Q.
For every function $f(x)$ which is twice differentiable, these will be good approximation of
$\int\limits_{a}^{b} f(x) d x=\left(\frac{b-a}{2}\right)\{f(a)+f(b)\},$
for more acurate results for $c \in(a, b)$,
$F(c) =\frac{c-a}{2}[f(a)-f(c)]+\frac{b-c}{2}[f(b)-f(c)] $
When $ c =\frac{a+b}{2} $
$\int\limits_{a}^{b} f(x) d x =\frac{b-a}{4}\left[f(a)+f(b)+2 \int(c)\right\} d x$
If $\displaystyle\lim _{t \rightarrow a} \frac{\int\limits_{a}^{t} f(x) d x-\frac{(t-a)}{2}\{f(t)+f(a)\}}{(t-a)^{3}}=0$ then degree of polynomial function $f(x)$ atmost is
(1) 0
(2) 1
(3) 3
(4) 2
IIT JEEIIT JEE 2006Integrals
Solution: