Q.
If $L_1$ and $L_2$ be two non-vertical lines with slopes $m_1$ and $m_2$ respectively. If $\alpha_1$ and $\alpha_2$ are the inclinations of lines $L_1$ and $L_2$, respectively. Let $\theta$ and $\phi$ be the adjacent angles between the lines $L_1$ and $L_2$. Then, match the terms of Column I with terms of Column II and choose the correct option from the codes given below.
Column I
Column II
A
$\tan \theta$
1
$\frac{m_1-m_2}{1+m_1 m_2}\left(\right.$ as $\left.1+m_1 m_2 \neq 0\right)$
B
$\tan \phi$
2
$\frac{m_2-m_1}{1+m_1 m_2}$ is positive,(as $1+m_1 m_2 \neq 0$ )
C
$\theta$ will be acute and $\phi$ will be obtuse
3
$\frac{m_2-m_1}{1+m_1 m_2}$ is negative, (as $1+m_1 m_2 \neq 0$ )
D
$\theta$ will be obtuse and $\phi$ will be acute
4
$\frac{m_2-m_1}{1+m_1 m_2}\left(\right.$ as $\left.1+m_1 m_2 \neq 0\right)$
| Column I | Column II | ||
|---|---|---|---|
| A | $\tan \theta$ | 1 | $\frac{m_1-m_2}{1+m_1 m_2}\left(\right.$ as $\left.1+m_1 m_2 \neq 0\right)$ |
| B | $\tan \phi$ | 2 | $\frac{m_2-m_1}{1+m_1 m_2}$ is positive,(as $1+m_1 m_2 \neq 0$ ) |
| C | $\theta$ will be acute and $\phi$ will be obtuse | 3 | $\frac{m_2-m_1}{1+m_1 m_2}$ is negative, (as $1+m_1 m_2 \neq 0$ ) |
| D | $\theta$ will be obtuse and $\phi$ will be acute | 4 | $\frac{m_2-m_1}{1+m_1 m_2}\left(\right.$ as $\left.1+m_1 m_2 \neq 0\right)$ |
Straight Lines
Solution: