Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \int x^{5}e^{-x^2}dx =g\left(x\right)e^{-x^2} +c $ where $c$ is a constant of integration, then $g(-1)$ is equal to :

JEE MainJEE Main 2019Integrals

Solution:

Let $x^{2} =t \; 2xdx =dt $
$ \Rightarrow \frac{1}{2} \int t^{2} .e^{-t}dt $
$= \frac{1}{2} \left[-t^{2} .e^{-t} + \int2t.e^{-t}.dt\right] $
$ = \frac{1}{2}\left(-t^{2} .e^{-t}\right) + \left(-t.e^{-t} +\int1.e^{-t}.dt\right) = - \frac{t^{2}e^{-t}}{2} - te^{-t} -e^{-t} $
$= \left(- \frac{t^{2}}{2} -t-1\right)e^{-t} = \left(- \frac{x^{4}}{2} - x^{2}1\right)e^{-x^2}+C $
$g\left(x\right) = -1 -x^{2} - \frac{x^{4}}{2} +ke^{x^2} $
for $k = 0$
$ g\left(-1\right) =- 1 -1 -\frac{1}{2} = - \frac{5}{2} $