Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \int{\frac{x+2}{2{{x}^{2}}+6x+5}}dx $ $ =P\int{\frac{4x+6}{2{{x}^{2}}+6x+5}}dx+\frac{1}{2}\int{\frac{dx}{2{{x}^{2}}+6x+5}}, $ then the values of $ P $ is

KEAMKEAM 2010Integrals

Solution:

Let $ x+2=A\frac{d}{dx}(2{{x}^{2}}+6x+5)+B $
$ \Rightarrow $ $ x+2=A(4x+6)+B $
$ \Rightarrow $ $ x+2=4Ax+6A+B $
$ \Rightarrow $ $ 4A=1 $
$ \Rightarrow $ $ A=\frac{1}{4} $ $ 6A+B=2 $
$ \Rightarrow $ $ B=\frac{1}{2} $
$ \therefore $ $ \int{\frac{x+2}{2{{x}^{2}}+6x+5}}dx $ $ \int{\frac{\left( \frac{1}{4}(4x+6)+\frac{1}{2} \right)}{2{{x}^{2}}+6x+5}}dx $
$=\frac{1}{4}\int{\frac{4x+6}{2{{x}^{2}}+6x+5}}dx+\frac{1}{2}\int{\frac{2}{2{{x}^{2}}+6x+5}}dx $ Comparing it with $ \int{\frac{x+2}{2{{x}^{2}}+6x+5}}dx $
$=p\int{\frac{4x+6}{2{{x}^{2}}+6x+5}}dx+\frac{1}{2}\int{\frac{dx}{2{{x}^{2}}+6x+15}} $
$ \Rightarrow $ $ p=\frac{1}{4} $
Alternate $ p(4x+6)+\frac{1}{2}=x+2 $
$ \Rightarrow $ $ p(4x+6)=x+\frac{3}{2} $
$ \Rightarrow $ $ p=\frac{x+\frac{3}{2}}{4x+6}=\frac{1}{4} $