Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int\limits^x_1 \frac{dt}{|t\, \sqrt{t^2 - 1}} = \frac{\pi}{6}$ , then $x$ can be equal to

VITEEEVITEEE 2010Integrals

Solution:

$\int\limits_{1}^{x} \frac{d t}{|t| \sqrt{t^{2}-1}}=\frac{\pi}{6}$
$\Rightarrow \left[\sec ^{-1} t\right]_{1}^{x}=\frac{\pi}{6}$
$\Rightarrow \sec ^{-1} x-\sec ^{-1} 1=\frac{\pi}{6}$
$\Rightarrow \sec ^{-1} x- 0=\frac{\pi}{6}$
$\Rightarrow x=\sec \frac{\pi}{6}$
$\Rightarrow x=\frac{2}{\sqrt{3}}$