Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{\sin x}{\sin (x-\alpha)} d x=A x+ B \log \sin (x-\alpha)+C$, then value of $( A , B )$ is

Integrals

Solution:

$\int \frac{\sin x}{\sin (x-\alpha)} d x$
$=\int \frac{\sin (x-\alpha+\alpha)}{\sin (x-\alpha)} d x$
$=\int \frac{\sin (x-\alpha) \cos \alpha+\cos (x-\alpha) \sin \alpha}{\sin (x-\alpha)} d x$
$=\int\{\cos \alpha+\sin \alpha \cot (x-\alpha)\} d x$
$=(\cos \alpha) x+(\sin \alpha) \log \sin (x-\alpha)+C$
$A=\cos \alpha, B=\sin \alpha$