Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int^{\pi/2}_{0} \log\cos x dx =\frac{\pi}{2} \log\left(\frac{1}{2}\right)$ then $ \int^{\pi/2}_{0} \log\sec x dx = $

MHT CETMHT CET 2017Integrals

Solution:

Given, $\int\limits_{0}^{\frac{\pi}{2}} \log \cos x d x=\frac{\pi}{2} \log \frac{1}{2} \ldots$ (i)
Let $l=\int\limits_{0}^{\frac{\pi}{2}} \log \sec x d x=\int\limits_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{\cos x}\right) d x$
$=\int\limits_{0}^{\frac{\pi}{2}} \log (\cos x)^{-1} d x=-\int\limits_{0}^{\frac{\pi}{2}} \log (\cos x) d x$
$=-\int\limits_{0}^{\frac{\pi}{2}} \log (\cos x) d x $
$\left[\because \log m^{-n}=-n \log m\right]$
$=-\frac{\pi}{2} \log \left(\frac{1}{2}\right) $
$\left(\because \log \left(\frac{1}{a}\right)=-\log a\right)$
$=\frac{\pi}{2} \log 2$