Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int\limits_{0}^{\pi / 2} \sin ^{4} x \cos ^{8} x d x=\frac{7 \pi}{k}$ then find value of $k$.

Integrals

Solution:

$I=\int\limits_{0}^{\pi / 2} \sin ^{4} x \cos ^{8} x d x$
$=\frac{(4-1)(4-3) \times(8-1)(8-3)(8-5)(8-7)}{12.10 .8 .6 .4 .2 .1} \frac{\pi}{2}$
$I=\frac{7 \pi}{2048}$