Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int\limits_{0}^{2}\left(\sqrt{2 x}-\sqrt{2 x-x^{2}}\right) d x=$
$\int\limits_{0}^{1}\left(1-\sqrt{1-y^{2}}-\frac{y^{2}}{2}\right) d y+\int\limits_{1}^{2}\left(2-\frac{y^{2}}{2}\right) d y+I$

JEE MainJEE Main 2022Integrals

Solution:

$LHS =\int\limits_{0}^{2}\left(\sqrt{2 x}-\sqrt{2 x-x^{2}}\right) d x=\frac{8}{3}-\frac{\pi}{2}$
$R H S=\int\limits_{0}^{1}\left(1-\sqrt{1-y^{2}}-\frac{y^{2}}{2}\right) d y+\int\limits_{1}^{2}\left(2-\frac{y^{2}}{2}\right) d y+I$
$I+\frac{5}{3}-\frac{\pi}{4}$
So, $I=1-\frac{\pi}{4}=\int\limits_{0}^{1}\left(1-\sqrt{1-y^{2}}\right) d y$