Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{e^{5 \log _{e} x}-e^{4 \log _{e} x}}{e^{3 \log _{e} x}-e^{2 \log _{e} x}} d x=\frac{x^{3}}{\lambda}+c$, then find $\lambda$

Integrals

Solution:

$\int \frac{e^{5 \log _{e} x}-e^{4 \log _{e} x}}{e^{3 \log _{e} x}-e^{2 \log _{e} x}} d x$
$= \int \frac{x^{5}-x^{4}}{x^{3}-x^{2}} d x$
$=\int \frac{x^{2}\left(x^{3}-x^{2}\right)}{x^{3}-x^{2}} d x$
$=\int x^{2} d x$
$=\frac{x^{3}}{3}+C$