Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^{2} \theta} d \theta= A \log _{ e }| B (\theta)|+ C$ where $C$ is a constant of integration, then $\frac{ B (\theta)}{ A }$ can be

JEE MainJEE Main 2020Integrals

Solution:

$\int \frac{\cos \theta d \theta}{5+7 \sin \theta-2 \cos ^{2} \theta}$
$\int \frac{\cos \theta d \theta}{3+7 \sin \theta+2 \sin ^{2} \theta} [sin \theta= t , \cos \theta d \theta= dt ]$
$\int \frac{ dt }{2 t ^{2}+7 t +3}=\int \frac{ dt }{(2 t +1)( t +3)}$
$=\frac{1}{5} \int\left(\frac{2}{2 t +1}-\frac{1}{ t +3}\right) dt$
$=\frac{1}{5} \ln \left|\frac{2 t +1}{ t +3}\right|+ C$
$=\frac{1}{5} \ln \left|\frac{2 \sin \theta+1}{\sin \theta+3}\right|+ C$
$A =\frac{1}{5}$ and $B (\theta)=\frac{2 \sin \theta+1}{\sin \theta+3}$